

ESLG College

GUIDELINES FOR CONSTRUCTIVE ALIGNMENT OF LEARNING OUTCOMES WITH LEARNING ACTIVITY AND STUDENT ASSESSMENT

Prishtina, 05.05.2021

TABLE OF CONTENTS

TAE	BLE OF CONTENTS	. 2
1.	INTRODUCTION	. 3
2.	ENSURING ALIGNMENT	. 3
3.	LINKING LEARNING OUTCOMES TO ASSESSMENT	.4
4.	LINKING OUTCOMES TO TEACHING AND LEARNING STRATEGIES	. 5
5. LEA	DIFFERENCE BETWEEN TRADITIONAL COURSE OUTLINES AND OUTCOME-BASEI ARNING COURSE OUTLINE) .6
5.	CONSTRUCTIVE ALIGNMENT SAMPLE	. 7
6.	UTILITY FORMULA IN SELECTION OF ASSESSMENT METHOD	.8
7.	ALIGNMENT EXAMPLE	11

1. INTRODUCTION

The present Guide aims at explaining the principle of Constructive Alignment. Constructive alignment refers to an approach to instructional design that integrates Course Learning Outcomes (CLOs), (b) Teaching and Learning Activities (TLAs), and (c) Assessment methods (Ass.). As shown in Figure below the constructive alignment demands optimal coherence between these three elements in a course or curriculum. Moreover, constructive alignment underpins and assures the quality of an educational programme.

Figure 1: Constructive alignment

"[Constructive alignment] makes quite explicit the standards needed if the intended learning outcomes are to be achieved and maintained" (Biggs & Tang, 2015, p. 14).

Constructive alignment at the course level implies that course learning outcomes, student assessment, and learning and teaching activities all act in support of each other. The constructive alignment triangle is symmetrical triangle. If one part of the triangle is absent or is not supportive of the other parts, the triangle will collapse, hence the constructive alignment will not function.

2. ENSURING ALIGNMENT

Student assessment based on well-guided criteria lay down the clear foundation for inclusive learning processes at ESLG College. If implemented properly, the student assessment with well guided criteria can provide a shared language between students and professors, who serve as assessors at the same time.

In ensuring constructive alignment, course learning outcomes play a primary role. Course learning outcomes guide the selection and design of learning activities and assessments.

Furthermore, assessment is in alignment with the course learning outcomes, when it really assesses whether or not a student can achieve a specific course learning outcome.

In addition, the part of constructive alignment is also the teaching and learning activities and teaching resources, which are in alignment when they provide students the best opportunity to learn what is specified in the learning outcome.

An effective learning outcome contains a verb that can guide the selection or creation of activities that students need to engage with to achieve the outcome. The same verb can guide the selection of student assessment mechanisms, which can measure how well students achieved the outcome and facilitate appropriate feedback.

It is essential that teaching and learning activities, including skills practice, match the learning outcome and that assessments measure what students learned and practiced. Oftentimes, upon course review, the course bearer may discover that teaching and learning activity or student assessment form is not aligned with the specific course learning outcome for which it designed for. To this end, the course bearer should modify the teaching and learning activity or student assessment format in order to reflect the course learning outcome. If this is not applicable, the course bearer may end up revising the learning outcome.

Here is an example of this relationship between these three components affecting each other.

- The *learning outcome*, or *objective* of a lesson is to explain the events that caused global energy crisis in 1970s;
- The *learning activity* is to define the historical events that lead to the tensions which sparked the global energy crisis in 1970s;
- The *assessment* of this lesson comes in the form of an exam question, which asks students to discuss the role of international politics and global economy which gave rise to the global energy crisis.

3. LINKING LEARNING OUTCOMES TO ASSESSMENT

The assessment process examines the extent to which students have achieved the course learning outcomes. Therefore in designing an assessment program it is essential that the course learning outcomes form the basis of what is assessed and how it is assessed.

Each course learning outcome should be assessed. If a stated course learning outcome is not assessed, neither the course professor nor the students will know if it has been realized. If the

learning outcome is framed in such a way that assessment is not feasible, the course bearer must reframe it so that demonstration of course learning outcome attainment is possible.

Figure 2: Alignment of CLOs with tasks

4. LINKING OUTCOMES TO TEACHING AND LEARNING STRATEGIES

The action verbs of course learning outcomes will flag the sorts of learning activities that will best lead to their attainment. For example, if one learning outcome is for students to be able to analyze and interpret data, then there should be activities where students are asked to analyze and interpret data, and opportunities for them to monitor, assess and receive feedback on their progress regarding these skills. If, as an outcome, students are expected to be able to construct a written legal argument based on particular law, then they will need to be taught the skills involved and engaged in activities that allow them to practice and refine those skills.

5. DIFFERENCE BETWEEN TRADITIONAL COURSE OUTLINES AND OUTCOME-BASED LEARNING COURSE OUTLINE

Proper constructive alignment between teaching, learning, assessment activities and learning outcomes is crucial for successful implementation of the OBL approach (Barkley & Major 2016; Biggs & Tang 2007).

itional course outline	OBL course outline		
se objectives	Course learning outcomes		
ntroduce students to life cycle costing in	CLO1: Understand concepts such as LCC		
esign, material selection, construction	costing in design, material selection,		
nd operation and maintenance.	construction and operation and maintenance;		
amiliarize students with formulation			
echniques for effective design, material	CLO1: Apply principles of LCC costing in		
election, construction and operation and	building design, material selection,		
naintenance.	construction and operation and maintenance;		
ntroduce students to methods of LCC			
osting, formulation of strategies for	CLO3: Develop an appropriate a LCC		
esign, material selection, construction	strategy for effective building design,		
nd operation and maintenance.	material selection, construction and operation		
	and maintenance.		
	CLO4: Communicate effectively with peers		
	and clients at a high level of proficiency.		
	itional course outline se objectives attroduce students to life cycle costing in esign, material selection, construction and operation and maintenance. amiliarize students with formulation chniques for effective design, material election, construction and operation and aintenance. attroduce students to methods of LCC osting, formulation of strategies for esign, material selection, construction and operation and maintenance.		

Table 1: Difference between traditional course outlines and OBL course outlines

Comparison of assessment tasks under the traditional model and outcome-based learning model is shown below:

Assessment tasks in the old course outline	Assessment tasks in the new OBL course outline
1. Mid-term exam (30%)a	1. Exam 1 (25%)a
2. Final exam (30%)a	2. Take Home Exam 2 (25%)a
3. Three assignments (40%)a	2. Case study home assignment (20%)b
	 5. Team Role play in debating about LCC costing for effective building design, materials selection, and operational and maintenance (15%)c 6. Research paper and presentation on LCC costing and its effect on building design strategies, materials selection, and operational and maintenance (15%)c

Table 2: Assessment tasks under old course outline and OBL course outline

a Individual assessment.

b Group assessment.

c Group assessment for the written document and individual assessment for the presentations.

5. CONSTRUCTIVE ALIGNMENT SAMPLE

Table 3: Constructive alignment sample

Type of course	Course learning	Teaching and	Assessment task
learning outcome	outcome	Learning activity	
Cognitive	CLO1: Apply life	Lectures	Case study home
(Demonstrate: Knowledge	cycle costing in	Tutorials	examination
Comprehension	design, material	Case study	
Application,	selection,	discussion	
Analysis,	construction and		
Synthesis, Evaluation)	operation and		
	maintenance		

Affective		CLO2:	Field work	Field work report
(Integration beliefs, ideas and attitudes)	of	Display a willingness to co- operate with peers.	Group work	Project work
Psychomotor		CLO3: Demonstrate	Documentary movie	Debate assessment
(Acquisition	of	good arguing skills	discussion	on LCC by
skills)				evaluation panel

6. UTILITY FORMULA IN SELECTION OF ASSESSMENT METHOD

Examples of criteria to assess the student achievement of intended learning outcomes are presented below as a form of guidelines for professors of various courses:

Selecting appropriate assessment methods for a course is often a difficult task. Prior to wise selection of assessment method, it is very important to assess the specific function of the respective assessment.

Why measuring the function of respective assessment method is important?

The function that assessment method plays in a study process is influenced by five factors and so-called utility formula.

The functions of assessment method can be the following:

- Provision of feedback to students;
- assigning grades to students;
- selecting students;
- Influencing student's learning behavior like timely starting to study the materials;
- Make student's experience satisfaction for the learning effort they put in, or completing or wrapping up the learning process;
- Be accountable to external stakeholders.

The utility of an assessment method is influenced by five factors such as reliability, validity, educational effects, acceptance of stakeholders, and cost efficiency.

The reliability reflects the extent to which repetitive sessions of an assessment instrument will generate the same results. In other words, if two or more comparable groups of students will be assessed, the same results should come out of it. The reliability is influenced by the length of an exam, the number and the diversity of questions in an exam, the transparency of an assessment, and the clarity of the language used then the clarity of expectations of both students and the course professor.

The next factor is validity. The validity raises the question whether the assessment method really measures what is really intended to measure. In other words, the validity questions whether the assessment method is aligned with the formulated learning outcome and whether the assessment method provides the course professor with the insight about the extent to which the learning outcome has been attained.

The third factor is the educational effects of the assessment method. It measures the extent to which the learning process is influenced by the assessment method and measures whether the effect is positive or negative and does it have a positive or a negative effect.

The assessment method's intentions are as follows:

- stimulate students to put time and effort in the learning process
- assists students to start timely with the learning activities
- provide students information on how well they did in the learning process (feedback);
- offer students information on how to improve next time (feed forward);
- offers students information on how their learning outcomes contribute to achieving the higher level program outcomes (feed up);

The fourth factor that influences the utility of the selected assessment method is acceptance by stakeholders. A chosen assessment methodology needs to be accepted by all crucial stakeholders. This means students, professors, and program management should have enough confidence in the outcomes generated by the assessment. In some cases, this means that before a new assessment methodology is used, effort needs to be put in creating commitment for it especially by students

The final factor influencing the utility of the selected assessment method is better cost efficiency. In all assessment methods, costs are involved, cost for the staff, locations, technology, etc.

The utility equals reliability multiplied by validity multiplied by educational effects multiplied by acceptance and, finally, multiplied by cost efficiency.

For a utility formula to work, none of the factors should be too low or even zero, because in that case, the utility of the assessment will not function.

Table 4: Utility formula factors

	Utility Formula Factors							
Methods of Assessment	Reliability	Validity	Educational Effect	Acceptance	Cost Efficiency			
MC Exam	+	+	+/-	+	+			
Essay	-	+	+	+/-	-			

Utility = R x V x E x A x C

(R= Reliability, V= Validity, EI= Educational impact, A= Acceptability, C= Cost) In some cases, the utility formula also includes practicability.

Utility = R x V x EI x P x A x CE

(R= Reliability, V= Validity, EI= Educational impact, P = Practicability, A= Acceptability, CI= Cost-effectiveness)

The utility of the assessment method is functional if none of these factors equals or nears zero.

7. ALIGNMENT EXAMPLE

As an example how to link the assessment criteria to learning outcomes by using particular assessment assignments, these Guidelines use one of learning outcomes of the course Sustainable Facility Management of the master study program in Management of Real Estate and Infrastructure (MA), for which a team project report is used as an assessment assignment to measure the student achievement of the learning outcome 1: Apply life cycle costing in design, material selection, construction and operation and maintenance

 Table 5: Example of assessment criteria for intended learning outcomes in the course

 Sustainable Facility Management

Intended learning outcomes	Assessment criterion	Fail descriptor		
Apply life cycle costing in design, material selection, construction and operation and maintenance	Demonstrate and apply theoretical and practical knowledge of life cycle costing principles to material selection, operation and maintenance of the building	Demonstrate partially- developed knowledge of life cycle costing related to the design, material selection, construction and operation and maintenance of the building Make insufficient or wrong assumptions and partially calculate some of the expected life cycle parameters in materials and building operations, occasionally justifying the use and outcomes of selected materials. Partially link to some life cycle costing practices.		

The achievement of learning outcome: Apply life cycle costing in design, material selection, construction and operation and maintenance is measured by the assessment assignment Team Project Technical Report as described in the section Types of Assessment Assignments, which is assessed by the following assessment criteria:

- 1. Demonstrate and apply theoretical and practical knowledge of life cycle costing principles to material selection, operation and maintenance of the building (35 %);
- 2. Solve energy consumption problems during construction and operations phase of the building (35 %);
- 3. Communicate in a team in writing in the form of a technical project report (30 %);

The standard descriptors used to assess the student achievement of the learning outcome: Apply life cycle costing in design, material selection, construction and operation and maintenance through the assessment assignment (Team Project Technical Report) are:

- Fail Grade 5;
- Pass Grade 6;
- Average credit Grade 7 and 8;
- Distinction Grade 9;
- High distinction Grade 10

The descriptors are explained for each assessment criterion in Table 6.

Intended learning	Assessment	High	Distinction –	Average	Pass – Grade 6	Fail – Grade 5
outcomes	criterion	Distinction –	Grade 9	credit- Grades		
		Grade 10		7 and 8		
Apply life cycle	Demonstrate and	Demonstrate	Demonstrate	Demonstrate	Demonstrate	Demonstrate
costing in design,	apply theoretical and	and apply	and apply broad	and apply	and apply basic	partially-
material selection,	practical knowledge	knowledge of	knowledge of	knowledge of	knowledge of	developed knowledge of
construction and	of life cycle costing	life cycle	costing when	costing when	costing when	life cycle
operation and	principles to material	costing when	discussing and	discussing and	discussing and	costing related
maintenance	selection operation	thoroughly	describing the	describing most	describing some	to the design,
maintenance	selection, operation	discussing and	main concepts	of the concepts	of the concepts	material
	and maintenance of	describing the	and features	and features	and features	selection,
	the building (35 %)	main concepts	related to the	related to the	related to the	construction
		and features	design,	design,	design, material	and operation
		related to the	materials	materials	selection, and	and
		design,	selection, and	selection, and	building	maintenance of
		materials	buildings	buildings	operations and	the building
		selection, and	operations and	operations and	maintenance.	Make
		buildings	maintenance.	maintenance.	Make at least	insufficient or
		operations and	Make relevant	Make	half the	wrong
		maintenance.	assumptions	assumptions	required	assumptions
		Make	and correctly	and calculate	assumptions	and partially
		meaningful	calculate the	most expected	and calculate	calculate some
		assumptions	expected	life cycle	some of the	of the expected
		and correctly	parameters in	costing	expected life	life cycle
		calculate all of	building	parameters in	cycle	parameters in
		the expected	operations and	building	parameters in	materials and
		parameters in	maintenance.	operations and	building	building
		building	justifying the	maintenance,	operations,	operations,

		operations and	use and	justifying the	partially	occasionally
		maintenance,	outcomes of	use and	justifying their	justifying the
		thoroughly	selected	outcomes of	use and	use and
		justifying the	materials.	selected	outcomes of	outcomes of
		use and	Support your	materials.	selected	selected
		outcomes of	work with	Support most of	materials.	materials.
		selected	relevant and	your work with	Support at least	Partially link to
		materials.	current	relevant	half of your	some life cycle
		Support all your	literature, link	literature, link	work with	costing
		work with	most of your	some of your	literature, link	practices.
		extensive,	design and	design and	some of your	-
		relevant and	development	development	design and	
		current	work to relevant	work to relevant	development	
		literature, link	LCC theory in	LCC theory in	work to life	
		all of your	industry	construction	cycle costing	
		design and	practices	industry	theory in	
		development		practices.	construction	
		work to relevant			industry	
		LCC theory in			practices.	
		industry				
		practices.				
Apply life cycle	Solve energy	Communicate	Communicate	Communicate	Communicate	Work mainly as
costing in design.	consumption	and work	and work	and work in a	and work	an individual.
material selection	nrohlama during	effectively in a	effectively in a	team and	regularly in a	Partially solve
material selection,	problems during	team and as a	team and as a	occasionally as	team to plan	building energy
construction and	construction and	leader to	leader to plan	a leader to plan	and conduct the	consumption
operation and	operations phase of	efficiently plan	and conduct the	and conduct the	project to	problems in the
maintenance	the building (35 %):	and conduct the	project to	project to	achieve some of	construction &
	····· · · · · · · · · · · · · · · · ·	project to	achieve all	achieve most of	the stipulated	operations
		achieve all	stipulated goals	the stipulated	goals of	phases to:

	stipulated goals	of calculating	goals of	calculating	provide
	of calculating	energy	calculating	energy	inaccurate
	energy	consumption of	energy	consumption of	and/or
	consumption of	the building.	consumption of	the building.	incomplete
	the building.	Solve energy	the building	Solve energy	building
	Solve energy	consumption	Solve energy	consumption	materials
	consumption	problems	consumption	problems in the	solutions
	problems in the	problems in the	problems in the	construction &	solutions,
	construction &	construction &	construction &	operations	
	operations	operations	operations	phases of the	
	phases of the	phases to:	phases of the	building to:	
	building to	\square provide	building to	\Box provide some	
	nrovide	accurate and	\Box provide	accurate and	
	accurate.	practical	accurate and	practical	
	innovative and	building	practical	building	
	practical	materials	building	materials	
	building	solutions most	materials	solutions	
	materials	of which are	solutions	solutions,	
	solutions	innovative	solutions,		
	solutions,	iiiio (adi (e,			
Apply life cycle Communicate in a	Communicate	Communicate	Communicate	Communicate	Present
team in writing in the	concisely and	concisely and	coherently in a	in a structured	information.
form of a technical	coherently in a	coherently in a	structured and	and readable	
material selection, project report	structured and	structured and	readable report	report that	
construction and (30%)	readable report	readable report	that adheres to	largely adheres	
operation and	that adheres to	that adheres to	the given	to the given	
operation and	the given	the given	format.	format.	
maintenance	format with	format.			
	comprehensive				
	and fully				

	detailed, diagrams and photos		